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DECAY OF STRONG PLANE SHOCKS IN AN IDEAL GAS

by Pei Chi Chou, Robert R. Karpp, and Lawrence J. Zajac
DREXEL INSTITUTE CF TECHNOLOGY

ABSTRACT ﬂq904

An approximate analytical solution for the decay of strong plane
shocks in an ideal gas is developed as the first step in the study of
spherical shocks produced by hypervelocity impact. A graphical solu-
tion to the same problem is obtained by a stepwise characteristics
method in order to establish a criterion with which t¢ compare the
present analytical solution. Although it is based upon certain sim-
plifying assumptions, the analytical solution yields a good time-
history representation of the shock wave phenomena in an ideal gas.
For weak shocks, both the analytical and graphical solutions agree
favorably with Friedrichs' solution at small values of time. By a
modification of the equation of state, the approximation techyiqg
developed in this report can be extended to other media. mj
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DECAY OF STRONG PLANE SHOCKS IN AN IDEAL GAS

I. Introduction:

The shock front created by hypervelccity impact in a liquid is very close
to hemispherical in shape as evidenced by the experiments performed by Stepka.1
In a previous report,2 based upon the spherical symmetry of the shock front, the
authors have developed an approximate semi-empirical equation which gives the
time-history of the peak pressure behind the shock front, Other investigatoré’4
have also attempted to investigate the spherical shock in liquids or solids by
analytical methods; however, no conclusive results have been obtained. These
analytical approaches, which are based upon certain similarity assumptions first
made by G. I. Taylor, yield good results in the solution of blast waves in air,
but so far they have not proved satisfactory for the solution of impact problems,
Since the pure analytical approach has not been successful, it is desirable to
employ numerical methods,

Two such numerical methods that may be employed for the calculation of the
decay of shock waves are the finite-difference method and the characteristics
method, The finite-difference method is more convenient for computer calculation,
but at times its accuracy is inferior, especially in the region bordering the
shock frontos Therefore, in the present problem, where the peak pressure and the
exact path are desired, the characteristics method will be employed.

There are two factors which govern the decay of three-dimensional (or two-

dimensional) strong shocks--

1. The effect of the space dispersion and

2. the interaction between the shock front and the
rarefaction waves originating from free surfaces,
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The latter of these two (the rarefaction wave effect) can best be studied
by the decay behavior of plane shocks, In this report, the decay of plane shocks
is studied by the characteristic method, which is considered to be the first step
in the analysis of the spherical shock problem,

Al'tshuler and his coworkers6 have calculated the decay of strong plane
shocks in certain special cases by the stepwise characteristics method. However,
the results have not been reported in detail, nor has any approximate analytical
expression for the shock path been obtained. In the case of weak shocks in an
ideal gas, Friedrichs derived approximate equations for the shock path by fhe
method of characteristics°7 The accuracy of Friedrichs' method was later studied
by Lighthillo8 Fowles likewise obtained similar equations for the decay of weak
shocks in solids or liquids with the Murnaghan equation of state9 by assuming the
weak shocks to be isentropic compressions.

By following an analytical approach similar to the one used by Friedrichs,
we have obtained an approximate equation for the shock path of a strong shock
in an ideal gas, The characteristics method using a stepwise graphical scheme
has also been applied to the same problem, and the results compared with the
approximate analytical solutions with excellent agreement. With a slight
modification of the equation of state, the method developed in this report can be
easily applied to a liquid or solid medium.

In the analytical approach, it is assumed that the reflected waves and
contact lines resulting from the interaction between a rarefaction wave and a
strong shock are weak and can therefore be neglected. Across the shock front,
exgct shock conditions are used instead of the approximate shock conditions used
by Friedrichs.

It is interesting to note that for weak shocks, according to Friedrichs'
solution, the distance between the shock front and rarefaction tail (width of the

shock wave) increases as the square root of time for large values of time,
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According to the present solution, the width of the shock wave reduces to

zero at some finite, although large, time, This inconsistancy in solutions is
described in Section VI, The exact position of the tail of the rarefaction wave is
found to lie between the tail predicted by the present approximation and the tail
predicted by Friedrichs' approximation,

In this report, the precise problem to be solved is first stated and then
Friedrichs' existing solucion for weak shocks is summarized. A derivation of the
present approximate anaytical solution for strong shocks is presented along with
the necessary simplifying assumptions. A summary of the method of characteristics
pertinent to the solution of the present problem follows. Then the procedure for
a solution by the stepwise characteristics method is presented along with a new
graphical scheme utilizing a modified state plane. The accuracy of the present
analytical solution is next studied by approximately determining the errors intro-
duced by the simplifying assumptions. A detailed comparison of the three solutions
(Friedrichs' solution for weak shocks, the present anaytical solution, and the
stepwise characteristics solution) is made for shocks of different strengths. A
discussion of the behavior of weak shocks according to the two approximate analytical
solutions is next given, The report is concluded with statements on the significance

and possible extensions of the approximation procedure developed herein,

II. Statement of Problem

The problem to be studied is identical with one treated by Friedrichs.7 It
consists of a semi-infinite tube containing an initially stagnant, ideal gas
under the influence of a piston operating at the closed end. The piston is first
accelerated to a constant velocity; then, after a small displacement, it is sudden-

ly arrested and thereafter remains motionless, as shown in figure 1.



The instantaneous acceleration of the piston into the gas produces a
shock wave of constant strength and velocity. The sudden arresting of the piston,
at the point (xl, tl) in the x-t plane, produces a centered simple rarefaction
wave emanating from that point., The head of the rarefaction wave, which is
travelling at a greater speed than the shock, eventually overtakes the shock front
at (xz, tz) where an interaction between the two waves takes place. Consequently,
the shock velocity and the pressure ratio deteriorate in magnitude and strength,

A complete solution of the problem involves the determination of the path

of the shock front in the x-t plane and a description of the state of the gas behind

the shock,

I111. Friedrichs' Solution for Weak Shocks

As illustrated by Friedrichs, his solution is accurate for weak or moderate
shocks with excess pressure ratios of 1.5 or lessp7 His solution is summarized
below since it will be used later for purposes of comparison,

The approximations upon which his method is based are obtained by neglecting
shock strength terms of third order or higher. As a consequence, the change in
entropy across the shock front is ignored, One may then disregard the "back
reaction" of the shock on the wave motion if the conservation laws across the
shock are appropriately modified., Using the above approximations, Friedrichs

determined the following equation for the path of the shock front in the x-t plane,

n '
x..x‘ ¥ (t“'tl) (t"tl) +5K (tt"tl)

tt)%er Kk (t-1,)% W
for t> tz
u
where K= —=2
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For time t<t , the shock motion is represented by the straight line
2

x= bt @
_ Qe U, [ (m)uz)
where U. [H‘ (2‘;’ +3 ze,
Also, the excess pressure ratio at large times approaches the following
expression asymptotically,
BB - 2L [ax(BD )% 4i0(2E)]
e + .
P, ot K(t ‘t.) 4K (T&'T.) ’ (3)
and the pressure distribution over the wave zone, for large values of time,
is approximately given by
S [y iR @

An analysis of the accuracy of Friedrichs’ method applied to strong shocks

will be presented in section (V).

IV, Present Solutions for Stronnghocks

1. Governing Equations for Shocks and Isentropic Waves

The exact equations governing the fluid properties across a right-travelling

shock are

(%)z- (%‘,Y—(X- 1) ] )

G (3+1)2

% Z l 2
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where all velocities are referred to ground, Subscripts 1 and 2 refer
respectively to the fluid properties ahead of and behind the shock front.
Equations (5) through (8) are derived from the continuity, momentum and
energy equations, and the equation of state of an ideal gas.11 Application

of the theory of characteristics to the partial differential equation governing
unsteady, one-dimensional, constant area, isentropic flow yields the following

characteristic relationships

& =ute (9
de _ 4 ¥~
u == % (10)

where the upper and lower signs refer respectively to waves travelling to the
right and left relative to the fluid. For regions of constant entropy, the

pressure and sound speed are related by the following isentropic equation,
-
S =(£)* (10a)
Co Kk,

2. Approximate Analytical Solution for Strong Shocks

a., General Discussion

To develop an analytical solution for strong shocks, it is necessary to
make certain basic symplifying assumptions. For weak or moderate shocks,
Friedrichs neglects the change in entropy across the shock front and assumes
that the simple wave behind the front is unaffected by the shock. For strong
shocks, however, the entropy change across the shock is appreciable and can no
longer be neglected. Fortunately, the reflected wave system is much weaker than
the original shock or the original rarefaction wave, Consequently, our approach
utilizes the exact shock conditions, equations (5) through (8), but with the

simplifying approximations that:




1. in the original rarefaction wave,characteristic lines remain
straight lines and that

2, the particle velocity u along any one of these characteristic
lines remains constant,

With these assumed values of particle velocity u and the exact equations across

- the shock, the path of the shock front can be determined. For points directly
behind the front, the sound speed as calculated from the exact shock equation (6)
is different from the sound speed on the same straight characteristic line near
point (x], tl) . Therefore, in the wave zone behind the shock front, the present
approach results in an inconsistency in sound speed (and pressure). Consequently,
the exact shock equations are used to calculate sound speeds and pressures at
points just behind the shock front., But the sound speeds and pressures at points
on the tail of the rarefaction wave are computed by the characteristic equations,
and a linear variation in properties between the shock front and rarefaction tail
is assumed,

The present assumptions introduce very slight errors in the early stage of
the propagation of the shock front because the rarefaction wave has undergone
only small deflections caused by the shock-rarefaction interactions, For later
stages, however, greater errors are introduced since greater deflections are

encountered,

b. Development of Equations

In the present problem, the particle velocity u ahead of the shock front
is zero. Therefore, equation (5) can be rearranged to yield the following

relationship between shock propagation velocity U and gas particle velocity u.

)
- ¥ TR, 2] 2 :

U= Fu+[(B) ] ®, (11)
where the subscript notation corresponds to figure 1. Using assumption (1)

of the preceding section and equation (9), the following equation of the straight
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characteristic lines within the rarefaction wave, centered at (xl, tl), can

be obtained,

X=X, = (w+c)(t-1) (12)

The integrated form of equation (10) is

C-Cp = L (W-u;) (13)
which is the relationship between sound speed and particle velocity across a
right travelling isentropic wave, Combining equations (12) and (13), one obtains

x-x, = (& w+ - Ly, )(t-1) . (14)

The differential form of equation (14) is

dx _ [ -1 d

du ~ Bl-1)+ (I%Ll-l-c,_-é'z—uz)—fi (15)
where the differentiation is taken with respect to u, For the path of the
shock front, ‘i’_( -

dt
dx _dx dt _ dt
d = TA =2 == = “l .

an du ~dt du Udu ) (16)

Substituting equation (16) into (15), and using equation (11) and assumption
2, one obtains the following differential equation relating u and t,

Yy
2 : I-t
[[(IT)U'*'C 1" - U -t ‘-L]df (T'T)zd“ (17)
Equation (17) may be integrated, with limits t2 to t and u2 to u, and then the

following equations may be presented,

t"t - (Tz t.) exp{ [63 (7. Z,)+( 2+ cz) ‘n'z I +Cl;‘ I‘nl_zz—'l]} (18)

X=X, =(B'u + e3)(t-t,) (14)

?




where Cx = C - —‘,Z—'- u,
“2 ‘é.
z =[(§) @eel]- u

..[(z'+c) L‘-z'ﬂ'Cﬂ By,

and c,2 is calculated from equations (5) and (6). Equations (14) and (18)
describe the path of the shock front in terms of the parameter u, for time
t>t2. For time o<t<t2, the shock path is the straight line x= Ult' where Ul
is obtained from equation (11) with u= uzo

An equation for the shock velocity U as a function of x and t can be

obtained from equations (11) and (14),

U= 2(":--Xl Ca) [ %= Xu Ca) +c]"'z (19)

for t>t2 and x>x . The constant shock veloc1ty, for o<t<t2, is, from equation
2
(1D
Lo B B 2 4 2 Y2
U = &+ 4, + [( U.z+c'] . (297

By combining equation (19) with equation (8), one may obtain the following

expression for the excess pressure ratio across the shock front, for t>t2,

E—_P‘ - _.l 3 (X=X 1 %=X )
P, “’lH{[’c‘.q t-t, C3)+[4c‘?-(tt ~Cy) “]] } (21)

3. Graphical Solution by the Method of Characteristics

a, General Discussion

Since no exact analytical solution for strong shocks exists, some
criterion must be established against which the present solution may be compared.
The method of characteristics by stepwise. calculations usually yields good results,

but it is normally quite lengthly.lo’ 11 However, the use of a new graphical
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technique reduces the amount of ﬁiTe required for a solution by this method,
This technique utilizes a (p/pl)iv- versus (u/cl) state plane instead of the
conventional (c/cl) versus (u/cl) state plane. The basic problem is solved by
this stepwise characteristics method, ani the fesults are compared with the
analytical solution for strong shocks.

The partial differential equation describing unsteady, one-dimensional,
constant area, isentropic flow is hypervolic in nature and can be solved
numerically by the stepwise characteriitics method. The method utilizes two
planes, the physical plane (clt-x diagram of figure 2) and the state plane
(C/C1 - u/u1 diagram of figure 3a). In applying the stepwise characteristics
method, one replaces a region with continuously varying fluid properties in
the physical plane by a number of smaller regions, each having uniform fluid
properties, (thus, the "field method'" adaptation of the characteristics method
has been used as opposed to the'lattice point method“)ﬂ1 The graphical solution
is then obtained by constructing the complete flow field in the physical and
state planes,

Since the fluid remains in contact with the piston face, the initial
portion of the shock and rarefaction waves may be constructed in the physical
plane, (see figure 2). The initial shock velocity U1 is calculated from
equation (20) with u2 equal to the piston velocity, and then the initial portion
of the shock front with slope cI/U1 is constructed., The simple rarefaction wave
centered at (xlp cltl) may be arbitrarily divided into six regions by assuming
approximately equal increments of particle velocity between adjacent regionms,
The initial portion of the rarefaction wave is then constructed, by noting that

the I-characteristics (right-travelling waves) have slopes given by

- 10 -



where u and ¢ are now the average between the values on both sides of the
characteristics line. These waves are propagated with constant strength until
the head of the rarefaction wave overtakes the shock front, An interaction
between the waves then follows; and, as the shock continues with decreased
strength and velocity, a contact line in addition to the reflected wave is
formed. The shock strength diminishes as the difference in particle velocity
across the front is reduced. A contact line, which separates regions of
unequal &ntropy, forms because fluid particles passing through shocks of
unequal strengths attain different levels of entropy. A reflected wave is
required in order to satisfy the boundary conditions of equal pressure and
equal particle velocity across a contact line,

The remainder of the physical plane may be constructed by repeating a

few unit operations presented in the following section,

b, Unit Operations for Wave Interactions

Interaction of Shock and Rarefaction Waves

The fluid properities in regions 1, 2 and 4 are completely known from
the initial conditions of the problem, (see figure 2), The determination of
the fluid properties in regions 10 and 20 represents a typical unit operation
for the interaction of shock and rarefaction waves, The particle velocity and
pressure in regions 10 and 20 must be equal since the regions are separated by

a contact line, thus

= 122)
uﬂa"lLZO 122)

and

Pic® Fap - (23)
The process from region 4 to region 10 is isentropic; therefore, according to

¥
O -
—_— =

13

= 11 =

equation (10a), , £
C4 (




Also, the change in fluid properties across a left-travelling isentropic wave

(region 4 to region 10) is, from equation (10),
- Cm o g .
Cow Cq == G (W ly) (25)

The shock relations governing the change from region 1 to region 20 are

o . 2 (4} Ly
—" - —— — — 1
ey 5¥i ( & ) (263
CYRIRS CAHCRGINCY
IR e | 4/ )J - (27)
and -
B.. - ‘ .._X [ .L_j - i ]
P i+ C (28)
Equations szto @S)represent a system of seven simultaneous equations
which may be solved for th knowns U u c and ¢
ic y solved for the unkn . p o p20 10, o® S1o® o

thereby determining the fluid properties of regions 10 and 20. However, to solve
%*

these equations requires a trial and error procedure which is time consuming;

therefore, a new graphical method for the solution of these equations, to be

explained in section c, has been developed.

Interaction of Isentropic Waves and Contact Lines

When an isentropic wave (a right or left travelling characteristic) intersects
a contact line, it is in general necessary to have both reflected and transmitted
waves. For example, the characteristic dividing regions 10 and 11 in figure 2
intersects the first contact line. The fluid properties in regions 21 and 30 may
then be determined from the known properties of regions 10, 11, and 20, The fluid

particle velocity and pressure on both sides of the contact line (regions 21 and 30)

*
See, for instance, pages 202-203, ref, 10, or page 1026, ref. 11,
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must be equal, or

Lo = Mg (29)
and

M e

1 = 1o (29")

Since the isentropic relation is valid for regions on the same side of a

contact line, equation (29') may be presented as
g Cgo N
Z»:_' B <. .. (36)

ot

The relationships between fluid properties across isentropic waves, for the

regions under consideration, are

o . ~ =G N .
YRR %T(“al U, J 31)
Ca0~ Cao= 3t (Uaom Uye)

3 20~ Z \M307 Bae (32)

This system of four simultaneous equations {(equations 29, 30, 31, and 32) may

be solved for the four unknowns: ¢ , ¢ , u
21 30 21

regions 21 and 30. A graphical method, to be presented in the next section, is

s uao, which completely determine

also available for the solution of these equations,

c. Graphical Solutions for Wave Interactions:

To facilitate construction of the physical plane, it is advantageous to
apply a graphical method to solve the aforementioned equations governing wave
interactions. Due to the stepwise continuous construction, regions in the
physical plane map into points in the state plane (see figures 2 and 3). The
conditions of equal pressure and equal particle velocity across a contact line
suggest plotting the characteristics on a p-u state plane.

By integrating equation (10), with limits c, toc and u, tou, where the
subscript designates a reference region in which the fluid properties are known,

and dividing by ¢ ,one may obtain the equations of the characteristics in the

13
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!
c/c1 - u/c1 plane.

K

< .

+ &
Cy - *

‘& Un*
T 7 \ ¢ c

j (33)
i/

™

Subscript 1 refers to the region ahead of the shock, and the process from
condition (¢, u) to condition (cn,un) must be isentropic. The following

equation may be derived from equation (10a).

%=
¢ - (g;) (3;)(%)% (34)

The equations of the p-u state characteristics, as shown below, may now be

derived by combining equations (33) and (34).

=i

e y i ]
(B = 2RI ETEE )] e

The upper and lower signs refer respectively to characteristics of family II
(changes across right-traveling waves) and family I (changes across left-
travelling waves)., The general practice for a graphical solutien is to use
the p-u state plane in which the characteristics given by equation (35) are
curved linesa11 Since many of these lines must be used for the graphical
solution of the present problem, it is not convenient %glplot them in the
p-u plane. It is convenient, however, to use a (p/plifﬁ- Vs, (u/cl) modified

state plane in which the characteristics are straight lines., Figure 3b -1
v

illustrates the modified state plane with u/c1 as the abscissa and (p/pl)

as the ordinate. In this plane, equations (35) represent two families of

straight lines with slopes hd Tl (pn/pl) ZY (c /¢ ) . By using the isentropic
relationship, equation (10a), it can be shown that for regions of constant entropy
the slope of equations (35) remains constant. For example,
) =
K*I'V;:):x(cc) - tl(&’)zz:(ﬂ
AP 2/ T 2 ip Ca
Y=1
where the isentropic relationship (p / p ) 7y = ¢/ ¢ is valid from region
2 4 2 "

2 to region 4,
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The sheck polar, a graphical ﬁg?resentaticn of the shock relationships,
can also be plotted in the (p/pl) 2y versus (u/cl) state plane from equations
(5) and (8). Since only one shock polar is needed for the present problem, the
fact that it is a curved line does not introduce an);b}nconvenience° Using the
shock polar and state characteristics in the (p/pl)fv- versus (u/cl) state

plane it is possible to solve for fluid properties graphically in regions

created by the wave interactions.

Interaction of Shock and Rarefaction Waves

The seven equations relating fluid properties after the initial shock-
rarefaction interisfion (section IV-3b)} can be solved graphically with the
use of the (p/plif?- versus (u/cl) state plane, With the fluid properties in
regions 1, 2, and 4 known, it is possible to determine the fluid properties in
regions 10 and 20 by the following graphical procedure,

Region 2 lying on thgﬁfhock polar and region 4 lying on a Il-characteristic
with slope + JEL P2/ pl)iﬁr.(cl/ ¢, ) and passing through point 2 are plotted
in the state plane of figure 3b, Region 10 may be reachedlgi?m region 4 by
passing along a I-characteristic with slope - lél (p2/ }31)2.Y (cy/ ). The
shock polar represents all states immediately behind the shock front; therefore,
region 20 must be a point on the shock polar. Because of the boundary conditions
across a contact line, regions 10 and 20 map into the same point in the modified
p-u state plane. Therefore, the intersection of the I-characteristic through
point 4 and the shock polar locates region 10 and 20, The shock front propagation
velocity can be directly determined from equation (11) with u20 substituted for u,
All other regions about a rarefaction -shock interaction may be located in the
state plane by an analogous procedure with suitable substitution made for p2 and

c L]
2
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Interaction of an Isentropic Wave and a Contact Line

The four equations relating fluid properties in regions about the inter-
section of a rarefaction wave and a contact line can also be solved graphically
through the use of the modified p-u state plane, With known fluid properties
in regions 10, 11, and 20, it is possible to graphically determine the fluid
properties in regions 21 and 30 as follows.

Regions lowg?d 11 which 1lie on the same II-characteristic with slope
+ l%L (p2 / plff?- (cl / cz) may be plotted in the state plane of figure 3.
Region 21 may be reacgg? from region 11 by passing along a I-characteristic with

slope - J%L (p2 / pl)2Y (c1 / cz) , and region 30 may be reache

o

lfrom region 20

by passing along a II-characteristic of slope + ng (p20 / pl) ¥ (cl/ czo)°

Because of the boundary conditions across a contact line, regions 21 and 30 map

_f

LS

into the same point in the modified p-u state plane, Therefore, the inter-
section of these characteristic lines locates regions 21 and 30. Note that the
slope of a Il-characteristic passing through point 10 is different from the

slope of a Il-characteristic passing through point 20, even though points 10

and 20 map into the same point in figure 3b, This difference is caused by the
entropy change across the contact line dividing regions 10 and 20, All other
regions about a characteristic line and contact line intersection may be located
in the state plane by an analogous procedure provided proper substitution is made

for the state variables.

d, Examgles

Numerical examples for the present problem were obtained by applying the
above procedures, For the numerical calculations, the following values of

parameters were chosen,
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u=o y= 1.4
cl= 1128 ft/sec piston travel x = 1 ft,
1

= 1 atm
pl

The following three problems were solved in detail.

; extent of graphical
‘initial excessjsolutiom-final
pressure ratio|excess pressure ratio
initial shock| piston velocity u P2- P1 P - Pl drg£¥ng
_prob. strength ft/sec 2 P1 P1 number
1 weak 200 0.274 0,200 1603
2 strong 2000 6.264 2.434 1601
3 very strong 18000 428.9 144.9 1602

The physical plane for problem 2 (strong shock) is shown in figure 2, apd the
state properties for several regions are given in table 1. Notice that some waves
which are reflected from the contact lines are of negligible strength and therefore
are not shown in the physical plane,

Graphical solutions for the path of the shock front in the physical plane

are shown in figure 4 for all three problems,

V. Accuracy of Solutions

1. Accuracy of Assumptions

The simplifying assumptions made in Section IV-2 introduce errors of unknown
magnitude into the present analytical solution, These inaccuracies cannot be
calculated directly because no exact solution exists; however, an attempt to
determine the order of magnitude of the errors was made and is given below,

Assumption (1) states that the characteristics are straight lines within the
rarefaction wave. To verify this assumption, shock waves of three different

- 17 =




initial strengths (weak, strong, and very strong) were analyzed. For each
case three positions within the rarefaction wave were considered; namely,
head (u= u;),middle (u= 1/2 u;), and tail (u= o), The slope of a characteristic
line within the simple rarefaction wave was calculated first from equation (9)
with appropriate values of u and c. Then, using the same value of u, the
slope of a characteristic directly behind the shock front was calculated from
equations (5), (6), and (9). The difference between these two slopes was used
as the approximate deviation of the characteristic curves from a straight line.
It should be mentioned that the characteristic directly behind the shock front
is not a continuation of the characteristic within the simple rarefaction wave,
but it is another characteristic with the same velocity (u). Therefore, the
difference in slope between these two characteristics does not represent the
true variation of slope., This difference was used only as an indication of the
error iqvolved in assumption (1). This error analysis is summarized in table
2, For weak shocks, assumption (1) is nearly exact for the complete range
of the rarefaction wave; however, for a very strong shock, the deviation becomes
excessive for regions past the midpoint of the rarefaction wave.

Assumption (2) states that the particle velocity remains constant along
any characteristic within the rarefaction wave. To check the accuracy of the
assumption, the graphical solution by the stepwise characteristics method was
applied to three different initial strength shocks. The change in particle velocity
along selected characteristic lines, positioned at various percentages of particle
velocity decrease behind the head of the rarefaction wave, was calculated by the
graphical characteristics method and is listed in table 3., It should be noticed
that assumption (2) is reasonably accurate even for shocks which are initially
very strong, From the data, one may conclude that the motion of the shock.front

is described with reasonable accuracy by the present analytical solution for shocks
P2- P1
P1

of strength <6,
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2. Comparison of Solutions

In this section, comparisons are made among results obtained from the

three methods, namely,

1) weak shock solution, by Friedrichs

2) present analytical solution

3) graphical solution by the method of characteristics»
Figure 4 represents the time-displacement curves for shock fronts of initially
different strengths attenuated by rarefaction waves., For weak shocks, all
methods yield similar results for the shock path as shown in figure 4a. For
strong shocks, figure 4b, both the graphical solution and the present
analytical solution produce similar results until the shock strength equals
approximately one half of its original value, The weak shock approximation,
on the other hand, contains considerable error for a shock of this strength,
For very strong shocks, figure 4c, the present analytical solution and the
graphical solution are in close agreement until the shock strength equals
about 2/3 of its original value, The weak shock approximation is plotted in
figure 4c for comparison, At this shock strength, the weak shock approximation .
is not mathematically consistant., The pressure distribution along a constant
time line behind the strong shock front as computed by the three methods is
illustrated in figure 5, With the present analytical solution, it is not
possible to calculate the complete pressure distribution behind the shock
front. However, the pressure may be calculated at two points;

1) directly behind the shock front, and

2) at the tail of the rarefaction wave,
As a rough approximation to the pressure, a linear distribution between these
two points is assumed. This approximation to the pressure agrées reasonably

well with the graphical solution, see figure 5. The small pressure discontinuities in
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the graphical solution are caused by the reflected waves which originate at
the shock-rarefaction interactions.

Figure 6 represents the decrease in propagation velocity of a decaying
strong shock as calculated by the three methods. The pressure decay is

illustrated in figure 7.

VI, Behavior of Weak Shocks at Large Values of Time according to
“Approximate Solutions

According to Friedrichs’ approximation for weak shocks, the distance
between the shock front and the tail of the rarefaction wave i,e,, the '"width
of the shock wave,"” increases according to the square root of time for large
values of time. With our present analytical approximation, the "width of the
shock wave" reduces to zero since the shock and -arefaction tail intersect
at some finite large time. Thus, using the present approximation procedure,
the shock front ends at some finite time, The difference between these two
approximate solutions is shown schematically in figure 8.

The disagreement between the two solutions can be attributed to a
difference in both the location of the rarefaction wave and the positioq of the
shock front., In both approximations, the tail of the rarefaction wave is a
straight line in the x-t plane, (see figure 8). By Friedrichs'’ method, in which
the entropy change across the shock front is neglected, the fluid properties at
the tail‘of the rarefaction wave are identical with the properties of the
undisturbed fluid, and the slope of the tail is 1/c1. However, the present
approach considers the entropy change across the shock front. Therefore, the
pressure and sound speed at the tail of the rarefaction wave are both slightly
larger than the values in the undisturbed region, and the slope of the tail is

1/¢c where 1/c < 1/c¢c .
3 3 1

- 20 -




The exact slope of the rarefaction tail before it is effected by/the
reflected wave system (region 3 of figure 2) is 1/c3. Thus, the present
approximation gives the correct location of the initial portion of the tail
of the rarefaction wave, At large values of time, the strength of the shock
front deteriorates, and the slope of the tail must approach 1/cl. Therefore,
Friedrichs' approximation gives the correct slope of the tail at large values
of time, The tail must lie between these two straight lines as shown in
figure 8, although its exact location is ot known,

The path of the shock front in the x-t plane calculated by the present method
always lies above the shock calculated by Friedrichs' method, This difference
in ilocation occurs not only because of Friedrichs' isentropic assumption but
also because of his approximate expression for shock velocity (see appendix B).

The above differences cause the solutions to conflict at large values of
time., Unfortunately, the exact position of the shock path is not known. The
question whether, at large values of time, the "width of shock" reduces to zero,

approaches a constant, or increases monotonically is still unanswered,

VII, Concludiqg Remarks

The approximate analytical expression for the path of a decaying strong
plane shock in an ideal gas is developed in the body of this report. Such a
solution is significant since no exact analytical solution to the problem exists,
and numerical solutions of the characteristic equations in finite-difference form
are too lengthly. The solution as presented is based upon certain simplifying
assumptions considered in Section IV-2., These assumptions introduced very little
error in the early stage of the shock front because the rarefaction wave has not
yet undergone many deflections caused by the shock-rarefaction interactions,
From the analytical solution, equations for the pressure and velocity decay of a

shock wave are developed.
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Because of the absense of an exact analytical solution, a solution to
the shock attenuation problem was also carried out graphically by the method
of characteristics, A new procedure was developed in this phase which
facilitated the otherwise lengthy calculations inherent in the step-wise

characteristics method, Th%_Todified graphical method for this particular

problem utilizes the (p/pl)2Y

vs, u/c1 state plane, This step-wise
characteristics method then comprised the basis of comparison for the approxi-
mate analytical solution,

The results of the two solutions (analytical and graphical) are comparable
in the early stages of shock front propagation., The accuracy of the approximate
analytical solution, as compared with that of the graphical solution, decreases
for later stages of strong shock front propagation.

These solutions were also compared with an approximate solution for weak
shocks by Friedrichs, For weak shocks, all three solutions agree in the early
stages of the wave motion; however, a significant difference exists between the
present analytical solution and Friedrichs' solution at very large values of
time,

By a modification of the equation of state, the approximation technique
developed in this report can be extended to other media, Regarding the solution
of the spherical shock problem in water, the next phase of this project will be
to study (by the methods developed in this report) the decay of a strong plane
shock in water, Following this study, an investigation of the spherical shock
problem will be undertaken. Although only one space coordinate is required to
describe the position of the shock front, the area of the spherical shock front
is not constant, Therefore, a modification of the present stepwise method of

characteristics will be required,
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The apparent accuracy of our approximation procedure, for one-dimensional
unsteady strong shocks, suggests a possible extension of the method into other
problems of one-dimensional unsteady gas motion and two-dimensional steady
motion. For example, those problems studied by Friedrichs in reference (7),
such as the decay of shocks in two-dimensional steady flow and decaying n-waves,

may be extended to include the strong shock range.
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FIGURE 4. COMPARISON OF SOLUTIONS R-R

(a) weak shock, initial excess pressure ratio ~p, 274
(b) strong shock, initial excess pressure ratio = 6,264
(c) very strong shock, initial excess pressure ratio= 428.9
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REGION c/c1 u/c1 p/p1
1 1 0 1
2 1.472 1.773 7,264
3 1,117 0 1,051
4 1.418 1.500 5,569
5 1,367 1.250 4,267
6 1,318 1.000 3,347
7 1,268 . 750 2,552
8 1,217 .500 1,748
9 1.168 . 250 1.435
10 1.421 1,483 5,705
11 1.371 1,234 4,419
12 1,321 <981 3,399
13 1,270 +736 2,586
14 1,221 .481 1,961
15 1.171 .230 1,463
16 1.120 =,015 1,070
20 1,373 1,483 5,640
21 1,370 1.242 5,529
22 1,319 .986 3,347
23 1.270 o741 2,586
30 1,324 1,242 4,371
31 1,275 .990 3,359
32 1,318 990 3,347
33 1,269 . 742 2,567
50 1,325 1,231 4,411
51 1.276 .982 3,378
52 1.227 2738 2,568
70 1,294 1,231 4,415
71 1,275 990 3,353
72 1.226 0745 2,553
90 1.246 +990 3,378
91 1,197 2748 2,552
110 1,248 984 3,422
111 1.200 .738 2,595
120 1,223 .984 3.434

TABLE 1--PARTIAL LIST OF STATE PROPERTIES

(Regions Correspond to Figure 2)

initial data: u1= 0, ¢ = 1128 ft/sec, P,= 1 atm
u = 2000 ft/see¢ , Y = 1.4, piston travel xl= 1 ft,
Yy 2
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Initial Position
Shock Strength, within Approximate Deviation
Excess Pressure Rarefaction In Slope of Characteristic
Ratio wave Lines
- s -5
pZ pl 1 2
D s K
"1 1
weak Head (u= uz) 0
.274 Middle (u= 1/2 ug .014
Tail (u= o) .019
Strong Head 0
6.264 Middle 4,28
Tail 10,35
Very Strong Head (]
428.9 Middle 17.1
Tail 81,2
TABLE 2
MAGNITUDE OF ERROR IN SLOPE CAUSED UM
THE CHARACTERISTICS ARE STRA .

_sl= slope of characteristic directly behind shock front

s = slope of characteristic within simple rarefaction wave
2

Note:

- 33 -
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Initial
Shock Strength,
Excess Pressure

Position Within
Rarefaction Wave--
Percent behind

Change in Particle
Velocity Along
A Characteristic line

Ratio Head of Wave

- u -u u, - u
P, " P 2 B s

5 = % u,

1 2 :
Weak 12.5 -0,.38
274 25 -0.43
Strong 15 -1,13
6,264 30 -1,52
44 -1,60

Very Strong
428.9 17 -1,90
34 -2|60
TABLE 3

CHANGE IN PARTICLE VELOCITY ALONG A CHARACTERISTIC

OBTAINED BY GRAPHICAL (CHARACTERISTICS) SOLUTION

ué= piston velocity

u = particle velocity at position of interest within
rarefaction wave

up= particle velocity directly behind shock

u.= particle velocity within simple rarefaction wave
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X. NOTATIONS:

u gas particle velocity

U shock propagation velocity

c sound speed

Y specific heat ratio

P density

P pressure

t time

x displacement

Subscript 1 Signifies conditions ahead of the shock
Subscript 2 Signifies conditions behind the initial

portion of the shock
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APPENDIX A

Behavior of the Shock Polar and Characteristic Lines in the State Planes

In applying the graphical method, since frequent use is made of the shock
polar and the state characteristic lines, it is desirable to establish their
behavior in the state planes, A discussion of the behavior of the shock polar
and characteristic lines in the p/pl VS, u/c1 plane and in the (p/pl)z‘Y Vs,
u/cl plane will be given, The behavior of these curves in the c-u state

plane is discussed in detail in reference [11], Chapter 25, The state planes

are shown in figure A, -1
7Y
SHOCK I p HHe kK
= AL,
_‘E PcLAR k R\ Tt POLAR
R ? (4
-CcHAR.
3 3 4
1
A * u
c .

\
Ficure A
¥-1
7Y
In both the p/p1 vs, u/cl plane and the (p/pl) 2 u/c1 plane, a II-

characteristic is shown to intersect the shock polar at two points. One
intersection is at point 2, which corresponds to the state of a region
immediately behind the shock front, It will be shown that another
intgrsection exists,

It will first be shown~that, at point 2 where isentropic expansion begins,
the slope of the II-characteristic is greater than the slope of the shock polar,
Hence, part of the characteristic curve must lie below the shock polar, as shown
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in figure A, Proof of at least one other intersection will be established by
showing that, at the vertical axis, p3>p1 . The following proof refers to
the p/pl Vs, u/cl state plane,

The equations for the shock polar and characteristics are respectively,

Mo R - 1)
c, ~ X‘YLP \)‘dn "\‘Iz (A1)
and 2% g}f

P (ﬂXC\)“ Cz ¥- (M A -1
oz = 2Y = LR (R N
P = whc) LlerZz 8 - %) -2

The slope of the shock polar is

¥+t 342
cj(P) X\Y(P‘ﬂzw-\’a o
d8) T UE- 2 3
and the slope of tge characteristic is ¥\ 4 +)
A(7/R) ¥ (&) RNF (BN
1%y = ¥&N R R) o

where subscript 2 refers to the region immediately behind the shock, To
determine the slope of the characteristic at the point of intersection, point

2 in figure A, p is equal to p and equation (A, 4a) becomes

d(¥)
T = e (R) .

To determine cl/c as a function of the pressure ratio p / plD the following
2 2

shock relations are used.

23 2
% = e ga (=) -1 (#:5)

2 U ) 7 N2 1 )
(ca) O, U(%\ ”(%ﬁ -0y e

Solving for U/c1 from equation (A.5) and substituting it into equation (A.6),

and
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one obtains
(3 (“‘—) ¥+
() B 3 g

To simplify the following equations, y is set equal to 1.4, Equation (A.7a)
then becomes o o

(E’_zﬁ_ W& ~ o)

Cy (%) +1

By substituting equation (A.7a) into (A.4b), the slope of the characteristic

(A.7b)

at point 2, may be expressed as a function of pz/ pl.
R !
= v /2
J(s) _ 4(%)\‘1 ¢($) +4 s
u - ' A3 I3 '
d(c (% +6
( )Ps‘a ?l\ -v\
The slope of the shock polar, equation (A.3a), with y= 1.4 is

°‘( [( —\)%+1]3/z
c\(u’/c [( ’r’.-n) 1 +Z] (A.3b)

Let R represent the ratio of the slope of the characteristic to the slope

of the shock polar at point 2, or

(%) ey P?) o
R="7% 1{ ﬁ-\)i v ]™ (A.9)

((3)%e]

)

Equation (A.9) may be simplified into the following inequality,

R> [‘ n 2‘((?.) -60(?)1“3‘2»& ) - 6]‘/1

36(%5)+ 228 (5% 13(B)v o
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Numerical calculations show that for any value of pz/ p1 greater than one,
R is also greater than one, Also, it can be shown numerically that R is
greater than one for any vy greater than 1.1. The above ratio illustrates that
one part of the characteristic must lie below the shock polar,

The expansion portion of the characteristic will cross the shock polar again
if the final pressure p3 is greater than the initial pressure pl, or, if

pé / pl >1 , From equation (A.,2), with u= o and p= p , one obtains

2§
B [\ — e g (A.10)
T ’L Ca

The pressure ratio p3/ pl may be obtained as a function of U/c1 by combining

equations (A,5), (A.6), and (A,B).

RTINS UET) B M-
© ’\ Tl s &(f\'\‘}[x\“ k%.) (¥- m (A.11)

Numerical calculations of equation (A,11) show that p3/ pl > 1 for any

U/cl > 1 and for yequal to or greater than 1.1. Hence, the lower part of
the characteristic lies above the shock polar which indicates at least one

other intersection.
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APPENDIX B

Relative Positions of Shock Paths According to the Two Approximations

In Section VI, it iz stated that, for the same initial conditions, the
shock path in the x-t piane calculated from Friedrichs® equation lies below
the path calculated from the precent equations, There are two factors which

contribute to this difference:

1) Friedrichs utilized an approximate equation for the shock velocity as
a function of particle velocity u, It will be shown that the values of shock
velocity U given by this approximate equation are larger than th- values given
by the exact equation at the same u. The slope of the shock path is 1/U;
therefore, the shock path given by the approximate equation has a smaller slope
than that given by the exact equation.

2) The rarefaction wave calculated by Friedrichs’ method is propagated
at a siower rate than thav caliculated by the present method. Therefore, the
rarefaction wave calculated by the present method overtakes the shock and
decreases its velocity more rapidly: consequently, the shock path according to

the present approximation lies above that of Friedrichs’,

Proof of 1:

The exact shock equation (U= f (u)) used in the present method is
J Ki* : { T4t ’
—_— = ] T B.1
&= T &.#V ) WE+Q (8.1)

The approximate equation used in Friedrichs® method is
A y

Yo 1 Jf_%;_ 4 \l) [A

. 2 T50 (8.2)
h T A
where z = 4 % R

The exact shock relationship in terms of J is
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JU_ @ q*
T T + \[7 -+ | (B.3)

Equation (B.3) can be expanded into
¥ T R A S ks
— | 4+ - LI A S
c='*Y7T =8 2-4( 4 )+z-4-c,~ 5 ) N

Subtracting the approximate equation (B.2) from the exact equation (B.4),

one finds that the remainder is a negative quantity since the magnitude of

each negative term is larger than the subsequent positive term, i,e.,

T - 2 ()] <o

This analysis illustrates that, for the same u, the value of U given by the

approximate equation is larger than the value given by the exact equation,

Proof of 2:
Reference 11, page 1006 illustrates that, for Y = 1.4, the slope of the
shock polar in the u-c plane is always greater than or equal to the slope of a

characteristic line., The typical slope of these curves is shown below,

<
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Consider a shock with the particle velocity u behind it and an isentropic
2

expansion from u.2 to a smaller particle velocity u , The figure shows that
L
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the resulting sound speed cu is larger than c:, where c; is obtained by
assuming that the shock is an isentropic compression wave (Friedrichs!
assumption). The characteristics within the rarefaction wave have velocities
givén by u + c; therefore, for a given value of u, the velocity of a
characteristic given by Friedrichs' method is less than the velocity given

by the present method.

NASA -Langley, 1964 - 43 -




